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Readers of previous editions of this text will notice a sig-
nificant new feature of the Sixth Edition from the cover 
alone: the title has been changed from Plant Physiology to 
Plant Physiology and Development. The new title reflects a 
major reorganization of Unit III (Growth and Development) 
along developmental lines. Instead of separate chapters 
on the structure and function of individual photorecep-
tors and hormones, the interactions of photoreceptors 
and hormones are described in the context of the plant 
life cycle, from seed to seed. This change in approach has 
been facilitated by the virtual explosion of information on 
the interactions of signaling pathways and gene networks 
during the past four years. Among the many new topics 
that are being covered for the first time in the Sixth Edi-
tion are seed dormancy, germination, seedling establish-
ment, root and shoot architecture, gametophyte develop-
ment, pollination, seed development, fruit development, 
biotic interactions, and plant senescence. The resulting 
up-to-date, comprehensive, and meticulously illustrated 
presentation of plant development will provide students 
with an unprecedented appreciation of the integration of 
light, hormones, and other signaling agents that regulate 
the various stages of the plant life cycle.

The chapters in Units I and II covering traditional plant 
physiological topics such as water relations, mineral nutri-
tion, transport, photosynthesis, and respiration, have also 
been extensively updated for the Sixth Edition. These pro-
cesses function more or less continuously throughout the 
life of the plant and, in our view, attempting to insert them 
arbitrarily into a particular stage of the life cycle is not 
only misleading, it disrupts the flow of the developmen-
tal narrative. Therefore, for pedagogical reasons, we have 

maintained the integrity of the physiological chapters at 
the front end of the book. After mastering the basic physi-
ological processes discussed in Units I and II, students are 
fully prepared to focus their attention on the signaling 
pathways and gene networks that govern the temporal 
changes that occur during the plant life cycle, as described 
in Unit III.

Besides the title change, a second important novel fea-
ture of the Sixth Edition can be gleaned from the cover: 
the addition of two new editors, Ian Max Møller, Asso-
ciate Professor at the Department of Molecular Biology 
and Genetics at Aarhus University, Denmark, and Angus 
Murphy, Professor and Chair, Department of Plant Science 
and Landscape Architecture at the University of Maryland 
in College Park. Max Møller served as a Developmental 
Editor for the text as a whole, assessing every chapter for 
level, consistency, and pedagogy. Angus Murphy spear-
headed the reorganization of Unit III and was a contrib-
uting author on several of the chapters. Both new editors 
have been invaluable during the preparation of the Sixth 
Edition, and their presence ensures that continuity will be 
preserved for many more editions of the text. In addition, 
Wendy Peer, Assistant Professor in the Department of 
Environmental Science and Technology at the University 
of Maryland, also made important contributions to the 
redesign of Unit III as well as serving as a contributing 
author to several chapters.

 Editors Sub-editors
 L. T. I. M. M.
 E. Z. A. M.

Preface
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For the Student
Companion Website (www.plantphys.net)

Available free of charge, this website supplements the cov-
erage provided in the textbook with additional and more 
advanced material on selected topics of interest and cur-
rent research. In-text references to Web Topics and Essays 
are included throughout the textbook, and the end of each 
chapter includes a complete list of Topics and Essays for that 
chapter. The site includes the following:

 • Web Topics: Additional coverage of selected topics

 • Web Essays: Articles on cutting-edge research, written 
by the researchers themselves

 • Study Questions: A set of short-answer questions for each 
chapter

 • References: A set of chapter-specific references, 
categorized by section heading.

 • Appendices: New for the Sixth Edition, four complete 
appendices are available online:

 • Appendix 1: Energy and Enzymes

 • Appendix 2: The Analysis of Plant Growth

 • Appendix 3: Hormone Biosynthetic Pathways

 • Appendix 4: Secondary Metabolites

For the Instructor
Instructor’s Resource Library
(Available to qualified adopters)

The Plant Physiology and Development, Sixth Edition Instruc-
tor’s Resource Library includes a collection of visual resources 
from the textbook for use in preparing lectures and other 
course materials. The textbook figures have all been sized 
and formatted for optimal legibility when projected. The IRL 
includes all textbook figures and tables in JPEG (both high- 
and low-resolution) and PowerPoint formats.

Value Options
eBook
Plant Physiology and Development is available as an eBook, in 
several different formats, including VitalSource CourseSmart, 
Yuzu, and BryteWave. The eBook can be purchased as either a 
180-day rental or a permanent (non-expiring) subscription. All 
major mobile devices are supported. For details on the eBook 
platforms offered, please visit www.sinauer.com/ebooks.

Looseleaf Textbook (ISBN 978-1-60535-353-1)
Plant Physiology and Development is available in a three-hole 
punched, looseleaf format. Students can take just the sec-
tions they need to class and can easily integrate instructor 
material with the text.

Media and Supplements
to accompany Plant Physiology and Development, Sixth Edition
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P lant physiology is the study of plant processes—how plants 
grow, develop, and function as they interact with their physi-

cal (abiotic) and living (biotic) environments. Although this book will 
emphasize the physiological, biochemical, and molecular functions 
of plants, it is important to recognize that, whether we are talking 
about gas exchange in the leaf, water conduction in the xylem, pho-

tosynthesis in the chloroplast, ion transport across membranes, 
signal transduction pathways involving light and hormones, or 
gene expression during development, all of these functions 
depend entirely on structures. 

Function derives from structures interacting at every level 
of scale. It occurs when tiny molecules recognize and bind 
each other to produce a complex with new functions. It occurs 
as a new leaf unfolds, as cells and tissues interact during the 

process of plant development. It occurs when huge organisms 
shade, nourish, or mate with each other. At every level, from 

molecules to organisms, structure and function represent different 
frames of reference of a biological unity. 

The fundamental organizational unit of plants, and of all living 
organisms, is the cell. The term cell is derived from the Latin cella, 
meaning “storeroom” or “chamber.” It was first used in biology in 
1665 by the English scientist Robert Hooke to describe the indi-
vidual units of the honeycomb-like structure he observed in cork 
under a compound microscope. The cork “cells” Hooke observed 
were actually the empty lumens of dead cells surrounded by cell 
walls, but the term is an apt one, because cells are the basic build-
ing blocks that define plant structure. 

Moving outward from the cell, groups of specialized cells form 
specific tissues, and specific tissues arranged in particular patterns 
are the basis of three-dimensional organs. Just as plant anatomy, 
the study of the macroscopic arrangements of cells and tissues 
within organs, received its initial impetus from improvements to the 
light microscope in the seventeenth century, so plant cell biology, 
the study of the interior of cells, was stimulated by the first applica-
tion of the electron microscope to biological material in the 

Plant and Cell  
Architecture
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mid-twentieth century. Subsequent improvements in both 
light and electron microscopy have revealed astonishing 
variety and dynamics in the components that make up 
cells—the cellular organelles, whose combined activities 
are required for the wide range of cellular and physiologi-
cal functions that characterize biological organisms.

This chapter provides an overview of the basic anatomy 
and cell biology of plants, from the macroscopic structure 
of organs and tissues to the microscopic ultrastructure of 
cellular organelles. Subsequent chapters will treat these 
structures in greater detail from the perspective of their 
physiological and developmental functions at different 
stages of the plant life cycle.

Plant Life Processes:  
Unifying Principles
The spectacular diversity of plant size and form is famil-
iar to everyone. Plants range in height from less than 1 
cm to more than 100 m. Plant morphology, or form, is 
also surprisingly diverse. At first glance, the tiny plant 
duckweed (Lemna) seems to have little in common with 
a giant saguaro cactus or a redwood tree. No single plant 
shows the entire spectrum of adaptations to the range of 
environments that plants occupy on Earth, so plant physi-
ologists often study model organisms, plants with short 
generation times and small genomes (the sum of their 
genetic information) (see WEB TOPIC 1.1). These models 
are useful because all plants, regardless of their specific 
adaptations, carry out fundamentally similar processes 
and are based on the same architectural plan.

We can summarize the major unifying principles of 
plants as follows:

 • As Earth’s primary producers, plants and green algae 
are the ultimate solar collectors. They harvest the 
energy of sunlight by converting light energy to chem-
ical energy, which they store in bonds formed when 
they synthesize carbohydrates from carbon dioxide and 
water.

 • Other than certain reproductive cells, plants do not 
move from place to place; they are sessile. As a substi-
tute for motility, they have evolved the ability to grow 
toward essential resources, such as light, water, and 
mineral nutrients, throughout their life span.

 • Plants are structurally reinforced to support their mass 
as they grow toward sunlight against the pull of gravity.

 • Plants have mechanisms for moving water and min-
erals from the soil to the sites of photosynthesis and 
growth, as well as mechanisms for moving the prod-
ucts of photosynthesis to nonphotosynthetic organs 
and tissues.

 • Plants lose water continuously by evaporation and have 
evolved mechanisms for avoiding desiccation.

 • Plants develop from embryos that derive nutrients from 
the mother plant, and these additional food stores facil-
itate the production of large self-supporting structures 
on land.

Plant Classification and Life Cycles
Based on the principles listed above, we can define plants 
generally as sessile, multicellular organisms derived from 
embryos, adapted to land, and able to convert carbon diox-
ide into complex organic compounds through the process 
of photosynthesis. This broad definition includes a wide 
spectrum of organisms, from the mosses to the flowering 
plants, as illustrated in the diagram, or cladogram, depict-
ing evolutionary lineage as branches, or clades, on a tree 
(Figure 1.1). The relationships of current and past plant 
identification systems, classification systems (taxonomies), 
and evolutionary thought are discussed in WEB TOPIC 1.2. 
Plants share with (mostly aquatic) green algae the primi-
tive trait that is so important for photosynthesis in both 
clades: their chloroplasts contain the pigments chlorophyll 
a and b and b-carotene. Plants, or embryophytes, share 
the evolutionarily derived traits for surviving on land that 
are absent in the algae. Plants include the nonvascular 
plants, or bryophytes (mosses, hornworts, and liver-
worts), and the vascular plants, or tracheophytes. The 
vascular plants, in turn, consist of the non-seed plants 
(ferns and their relatives) and the seed plants (gymno-
sperms and angiosperms). The characteristics of many of 
these plant clades are in the descriptions of their represen-
tative model species (see WEB TOPIC 1.1). 

Because plants have many agricultural, industrial, tim-
ber, and medical uses, as well as an overwhelming domi-
nance in terrestrial ecosystems, most research in plant 
biology has focused on the plants that have evolved in 
the last 300 million years, the seed plants (see Figure 1.1). 
The gymnosperms (from the Greek for “naked seed”) 
include the conifers, cycads, ginkgo, and gnetophytes 
(which include Ephedra, a popular medicinal plant). About 
800 species of gymnosperms are known. The largest 
group of gymnosperms is the conifers (“cone-bearers”), 
which include such commercially important forest trees 
as pine, fir, spruce, and redwood. The angiosperms (from 
the Greek for “vessel seed”) evolved about 145 million 
years ago and include three major groups: the mono-
cots, eudicots, and so-called basal angiosperms, which 
include the Magnolia family and its relatives. Except 
in the great coniferous forests of Canada, Alaska, and 
northern Eurasia, angiosperms dominate the landscape. 
About 120,000 species are known, with an additional 
17,000 undescribed species predicted by taxonomists 
using computer models. Most of the predicted species are 
imperiled because they occur primarily in regions of rich 
biodiversity where habitat destruction is common. The 
major anatomical innovation of the angiosperms is the 
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flower; hence they are referred to as flowering plants. 
WEB TOPIC 1.3 discusses the relationship between flower 
anatomy and the plant life cycle.

Plant life cycles alternate between diploid  
and haploid generations
Plants, unlike animals, alternate between two distinct 
multicellular generations to complete their life cycle. 
This is called alternation of generations. One generation 
has diploid cells, cells with two copies of each chromo-
some and abbreviated as having 2N chromosomes, and 
the other generation has haploid cells, cells with only 
one copy of each chromosome, abbreviated as 1N. Each 
of these multicellular generations may be more or less 
physically dependent on the other, depending on their 
evolutionary grouping. 

When diploid (2N) animals, as represented by humans 
on the inner cycle in Figure 1.2, produce haploid gam-
etes, egg (1N) and sperm (1N), they do so directly by the 
process of meiosis, cell division resulting in a reduction of 
the number of chromosomes from 2N to 1N. In contrast, 
the products of meiosis in diploid plants are spores, and 
diploid plant forms are therefore called sporophytes. Each 
spore is capable of undergoing mitosis, cell division that 

doesn’t change the number of chromosomes in the daugh-
ter cells, to form a new haploid multicellular individual, 
the gametophyte, as shown by the outer cycles in Fig-
ure 1.2. The haploid gametophytes produce gametes, egg 
and sperm, by simple mitosis, whereas haploid gametes 
in animals are produced by meiosis. This is a fundamen-
tal difference between plants and animals and gives the 
lie to some stories about “the birds and the bees”—bees 
don’t carry around sperm to fertilize female flowers, they 
carry around the male gametophyte, the pollen, which is 
a multicellular structure that produces sperm cells. When 
placed on receptive sporophytic tissue, the pollen grain 
germinates to form a pollen tube that must grow through 
sporophytic tissue until it reaches the female gametophyte. 
The male gametophyte penetrates the female gametophyte 
and releases sperm to fertilize the egg. This hidden nature 
of sex in plants, where it occurs deep inside sporophytic 
tissue, made its discovery difficult, and when discovered, 
was so “shocking” that it was frequently denied.

Once the haploid gametes fuse and fertilization takes 
place to create the 2N zygote, the life cycles of animals and 
plants are similar (see Figure 1.2). The 2N zygote under-
goes a series of mitotic divisions to produce the embryo, 
which eventually grows into the mature diploid adult. 
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Figure 1.1 Cladogram showing the evolutionary relation-
ships among the various members of the plants and their 
close relatives, the algae. The sequence of evolutionary 
innovations given on the right side of the figure eventually 
gave rise to the angiosperms. Mya, million years ago.
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Figure 1.2 Diagram of the generalized life cycles of plants and animals. In contrast 
to animals, plants exhibit alternation of generations. Rather than producing gametes 
directly by meiosis as animals do, plants produce vegetative spores by meiosis. These 
1N (haploid) spores divide to produce a second multicellular individual called the 
gametophyte. The gametophyte then produces gametes (sperm and egg) by mito-
sis. Following fertilization, the resulting 2N (diploid) zygote develops into the mature 
sporophyte generation, and the cycle begins again. In angiosperms, the process of 
double fertilization produces a 3N (triploid) or higher ploidy level (*; see Chapter 21) 
feeding tissue called the endosperm.
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Thus, all plant life cycles encompass two separate gen-
erations: the diploid, spore-producing sporophyte gen-
eration and the haploid, gamete-producing gametophyte 
generation. A line drawn between fertilization and meio-
sis divides these two separate stages of the generalized 
plant life cycle (see Figure 1.2). Increasing the number 
of mitoses between fertilization and meiosis increases 
the size of the sporophyte generation and the number of 
spores that can be produced. Having more spores per fer-
tilization event could compensate for low fertility when 
water becomes scarce on land. This could explain the 
marked tendency for the increase in size of the sporophyte 
generation, relative to the gametophyte generation, dur-
ing the evolution of plants.

The sporophyte generation is dominant in the seed 
plants, the gymnosperms and angiosperms, and gives 
rise to different spores: the megaspores, which develop 
into the female gametophyte, and the microspores, 
which develop into the male gametophyte (see Figure 
1.2). The way the resulting male and female gameto-
phytes are separated is quite diverse. In angiosperms, 
a single individual in a monoecious (from the Greek 
for “one house”) species has flowers that produce both 
male and female gametophytes; both can occur in the 
single “perfect” flower as in tulips, or they can occur in 
separate male (staminate) and female (pistillate) flowers 
as in maize (corn; Zea mays). If male and female flow-
ers occur on separate individuals, as in willow or pop-
lar trees, then the species is dioecious (from the Greek 
for “two houses”). In gymnosperms, ginkos and cycads 
are dioecious, while conifers are monoecious. Conifers 
produce female cones, megastrobili (from the Greek for 
“large cones”; singular megastrobilus), usually higher up 
on the plant than the male cones, microstrobili (from 
the Greek for “small cones”; singular microstrobilus). Both 
megaspores and microspores produce gametophytes with 
only a few cells, compared with the sporophyte. 

Sperm and egg production, as well as the dynamics 
of fertilization, differs among gametophytes of the seed 
plants (see WEB TOPIC 1.3). In angiosperms there is the 
amazing process of double fertilization, whereby two 
sperm are produced, only one of which fertilizes the 
egg. The other sperm fuses with two nuclei in the female 
gametophyte to produce the 3N (three sets of chromo-
somes) endosperm, the storage tissue for the angiosperm 
seed. (Some angiosperms produce endosperm of higher 
ploidy levels; see Chapter 21.) The storage tissue for the 
seed in gymnosperms is 1N gametophytic tissue because 
there is no double fertilization (see Figure 1.2). So the seed 
of seed plants is not at all a spore (defined as a cell that 
produces the gametophyte generation), but it does contain 
gametophytic (1N) storage tissue in gymnosperms and 
gametophyte-derived 3N storage tissue in angiosperms. 

In the lower plants, the ferns and mosses, the sporo-
phyte generation gives rise to spores that grow into adult 

gametophytes that then have regions that differentiate 
into male and female structures, the male antheridium 
and the female archegonium. In ferns the gametophyte 
is a small monoecious prothallus, which has antheridia 
and archegonia that divide mitotically to produce motile 
sperm and egg cells, respectively. The dominant leafy 
gametophyte generation in mosses contains antheridia 
and archegonia on the same (monoecious) or different 
(dioecious) individuals. The motile sperm then enters the 
archegonium and fertilizes the egg, to form the 2N zygote, 
which develops into an embryo enclosed in the gameto-
phytic tissue, but no seed is formed. The embryo directly 
develops into the adult 2N sporophyte.

Overview of Plant Structure
Despite their apparent diversity, all seed plants have the 
same basic body plan (Figure 1.3). The vegetative body 
is composed of three organs—the stem, the root, and the 
leaves—each with a different direction, or polarity, of 
growth. The stem grows upward and supports the above-
ground part of the plant. The root, which anchors the plant 
and absorbs nutrients and water, grows down below the 
ground. The leaves, whose primary function is photosyn-
thesis, grow out laterally from the stem at the nodes. Vari-
ations in leaf arrangement can give rise to many different 
forms of shoots, the term for the leaves and stem together. 
For example, leaf nodes can spiral around the stem, rotat-
ing by a fixed angle between each internode (the region 
between two nodes). Alternatively, leaves can arise oppo-
sitely or alternating on either side of the stem. 

Organ shape is defined by directional patterns of 
growth. The polarity of growth of the primary plant axis 
(the main stem and taproot) is vertical, whereas the typi-
cal leaf grows laterally at the margins to produce the flat-
tened leaf blade. The growth polarities of these organs 
are adapted to their functions: leaves function in light 
absorption, stems elongate to lift the leaves toward sun-
light, and roots elongate in search of water and nutrients 
from the soil. The cellular component that directly deter-
mines growth polarity in plants is the cell wall.

Plant cells are surrounded by rigid cell walls
The outer fluid boundary of the living cytoplasm of plant 
cells is the plasma membrane (also called plasmalemma), 
similar to the situation in animals, fungi, and bacteria. The 
cytoplasm is defined as all of the organelles and cytoskel-
eton suspended within the cytosol, the water-soluble and 
colloidal phase, residing within the plasma membrane, but 
which excludes the nucleoplasm, the internal compartment 
of the membrane-bounded nucleus in eukaryotes. How-
ever, plant cells, unlike animal cells, are further enclosed 
by a rigid, cellulosic cell wall (Figure 1.4). Because of the 
absence of cell walls in animals, embryonic cells are able 
to migrate from one location to another; developing tissues 
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Figure 1.3 Schematic representation of the body of 
a typical eudicot. Cross sections of the (A) shoot apex, 
(B) leaf, (C) stem, (D) root, and (E) root apex are also 
shown. The longitudinal sections of the shoot apex 
and the root apex are from flax (Linum usitatissimum).
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Figure 1.4 Plant cell walls and their associated 
plasmodesmata. (A) Diagrammatic representation 
of the cell walls surrounding four adjacent plant 
cells. Cells with only primary walls and with both 
primary and secondary walls are illustrated. The 
secondary walls form inside the primary walls. The 
cells are connected by both simple (unbranched) 
and branched plasmodesmata. Plasmodesmata 
formed during cell division are primary plasmo-
desmata. (B) Electron micrograph of a wall sepa-
rating two adjacent cells, showing simple plasmo-
desmata in longitudinal view. (C) Tangential sec-
tion through a cell wall showing a plasmodesma. 
(D) Schematic surface and cross-section views of 
a plasmodesma. The pore consists of a central 
cavity down which the desmotubule runs, con-
necting the endoplasmic reticulum of the adjoin-
ing cells. (E) Epidermal cells of an Arabidopsis leaf 
imaged with fluorescence microscopy showing 
the cell wall in red and complex plasmodesmata 
in green. The arrow points to the high number of 
plasmodesmata at cell three-way junctions, and 
the rectangle outlines plasmodesmata that con-
nect the epidermal cells to cells beneath them, 
the mesophyll cells. (F) A single tobacco leaf epi-
dermal cell expressing a green fluorescent viral 
movement protein imaged with fluorescence 
microscopy. (G) After a single tobacco leaf epi-
dermal cell expresses the gene for a viral move-
ment protein, several tobacco leaf epidermal cells 
express green fluorescent viral movement protein 
because it has moved to them through plasmo-
desmata. (B from Robinson-Beers and Evert 1991, 
courtesy of R. Evert; C from from Bell and Oparka 
2011; E from Fitzgibbon et al. 2013; F and G from 
Ueki and Citovsky 2011.)
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and organs may thus contain cells that originated in dif-
ferent parts of the organism. In plants such cell migrations 
are prevented, because each walled cell is cemented to its 
neighbors by a middle lamella. As a consequence, plant 
development, unlike animal development, depends solely 
on patterns of cell division and cell enlargement.

Plant cells have two types of walls: primary and second-
ary (see Figure 1.4A). Primary cell walls are typically thin 
(less than 1 mm) and are characteristic of young, growing 
cells. Secondary cell walls are thicker and stronger than 
primary walls and are deposited on the inner surface of 
the primary wall after most cell enlargement has ended. 
Secondary cell walls owe their strength and toughness 
to lignin, a brittle, gluelike material (see Chapter 14). The 
evolution of lignified secondary cell walls provided plants 
with the structural reinforcement necessary to grow verti-
cally above the soil and to colonize the land. Bryophytes, 
which lack lignified cell walls, are unable to grow more 
than a few centimeters above the ground.

Plasmodesmata allow the free movement  
of molecules between cells
The cytoplasm of neighboring cells is usually connected by 
means of plasmodesmata (singular plasmodesma), tubu-
lar channels 40 to 50 nm in diameter and formed by the 
connected plasma membranes of adjacent cells (see Figure 
1.4A–D). They facilitate intercellular communication dur-
ing plant development, enabling cytoplasmic exchange of 
vital developmental signals in the form of proteins, nucleic 
acids, and other macromolecules (see Chapters 18–20). 
Plant cells interconnected in this way form a cytoplasmic 
continuum referred to as the symplast. Intercellular trans-
port of small molecules through plasmodesmata is called 
symplastic transport (see Chapters 4 and 6). Transport 
through the wall spaces, which constitute the apoplast, is 
called apoplastic transport. Both forms of transport are 
important in the vascular system of plants (see Chapter 6).

Primary plasmodesmata are created as the primary 
cell wall assembles during and following cell division (dis-
cussed later in the chapter). Secondary plasmodesmata 
form after cell division is completed, across primary or 
secondary cell walls (see Figure 1.4A), when small regions 
of the cell walls are digested by enzymes and plasma 
membranes of adjacent cells fuse to form the channel. 
The endoplasmic reticulum network (see the section The 
Endomembrane System, below) of adjacent cells is also con-
nected, forming the desmotubule (see Figure 1.4C and 
D) that runs through the center of the channel. Proteins 
line the outer surface of the desmotubule and the inner 
surface of the plasma membrane (see Figure 1.4D); the two 
surfaces are thought to be connected by filamentous pro-
teins (spokes), which divide the cytoplasmic sleeve into 
microchannels. Valvelike wall collars, composed of the 
polysaccharide callose, surround the necks of the chan-
nel at either end and serve to restrict the size of the pore.

The symplast can transport water, solutes, and mac-
romolecules between cells without crossing the plasma 
membrane. However, there is a restriction on the size of 
molecules that can be transported via the symplast; this 
restriction is called the size exclusion limit, which varies 
with cell type, environment, and developmental stage. The 
transport can be followed by studying the movement of 
fluorescently labeled proteins or dyes between cells (see 
Figure 1.4E–G). The movement through plasmodesmata 
can be regulated, or gated, by altering the dimensions of 
the wall collars, the cytoplasmic sleeve, and the lumen 
inside the desmotubule. In addition, adjacent plasmodes-
mata can form interconnections that alter the size exclu-
sion limit. Thus, single channels, referred to as simple 
plasmodesmata, can form branched plasmodesmata 
(see Figure 1.4A) when they connect with each other.  

In a situation that occurs all too frequently, plant 
viruses can hijack the plasmodesmata and use them to 
spread from cell to cell. Movement proteins, encoded by 
the virus genome, facilitate viral movement by interact-
ing with plasmodesmata through one of two mechanisms. 
Movement proteins from some viruses coat the surface of 
the viral genome (typically RNA), forming ribonucleopro-
tein complexes. The 30-kDa movement protein of tobacco 
mosaic virus acts in this way. It can move between cells 
in leaves that are susceptible to the virus, where it recruits 
other proteins in the cell that reduce the amount of callose 
in the wall collar, increasing the size of the plasmodesma-
tal pore. As a result, even virus-sized particles can read-
ily move through the plasmodesmata to a neighboring 
cell (see Figure 1.4F and G). Other viruses, such as cow-
pea mosaic virus and tomato spotted wilt virus, encode 
movement proteins that form a transport tubule within 
the plasmodesmatal channel that enhances the passage of 
mature virus particles through plasmodesmata.

New cells originate in dividing tissues  
called meristems
Plant growth is concentrated in localized regions of cell 
division called meristems. Nearly all nuclear division 
(mitosis) and cell division (cytokinesis) occurs in these 
meristematic regions. In a young plant, the most active 
meristems are the apical meristems; they are located at 
the tips of the stem and the root (see Figure 1.3A and E). 
The phase of plant development that gives rise to new 
organs and to the basic plant form is called primary 
growth, which gives rise to the primary plant body. Pri-
mary growth results from the activity of apical meristems. 
Cell division in the meristem produces cuboidal cells 
about 10 µm on each side. Division is followed by progres-
sive cell enlargement, typically elongation, whereby cells 
become much longer than they are wide (30–100 µm long, 
10–25 µm wide—about half the width of a baby’s fine hair 
and about 50 times the width of a typical bacterium). The 
increase in length produced by primary growth amplifies 

01_TZ6e.indd   8 9/30/14   10:48 AM



Plant and Cell Architecture   9

the plant’s axial (top-to-bottom) polarity, which is estab-
lished in the embryo. 

Cell differentiation into specialized tissues follows cell 
enlargement (Figure 1.5, see also Figure 1.3). There are 
three major tissue systems present in all plant organs: 
dermal tissue, ground tissue, and vascular tissue (see Fig-
ure 1.3B–D). Dermal tissue forms the outer protective 
layer of the plant and is called the epidermis in the pri-

mary plant body; ground tissue fills out the three-dimen-
sional bulk of the plant and includes the pith and cortex 
of primary stems and roots, and the mesophyll in leaves. 
Vascular tissue, which moves, or translocates, water and 
solutes throughout the length of the plant, consists of two 
types of tissues: xylem and phloem, each of which con-
sists of conducting cells, generalized parenchyma cells, and 
thick-walled fibers. Some of the different cell types that 
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Figure 1.5 Secondary growth in stems and roots. (A) 
Stem primary to secondary growth. Primary growth is 
labeled in green, while secondary growth is labeled in 
red. The vascular cambium starts as separated growth 
regions in the vascular bundles, or fascia, of primary xylem 
and phloem. As the plant grows, the bundled, fascicular 
cambium becomes connected by interfascicular cambium 
between the bundles. Once the vascular cambium forms 
a continuous ring, it divides inward to generate secondary 
xylem and it divides outward to generate the secondary 
phloem. Regions in the cortex develop into phloem fibers 
and the periderm, which contains the phellogen, or cork 

cambium, and the outer phelloderm. With growth, the epi-
dermis ruptures and rays connect the inner and outer vas-
culature. (B) Root primary to secondary growth. The central 
vascular cylinder contains the primary phloem and primary 
xylem. As in the stem, the vascular cambium becomes con-
nected and grows outward, generating secondary phloem 
and rays. As roots increase in girth, the pericycle generates 
the root periderm, while the outer epidermis, cortex, and 
endodermis are sloughed off. The pericycle produces the 
phloem fibers and rays as well as lateral roots (not shown). 
The vascular cambium produces secondary phloem and 
rings of secondary xylem.
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